Food, Beverage, Tobacco & Cannabis
Mobility-LLM: Learning Visiting Intentions and Travel Preferences from Human Mobility Data with Large Language Models
Location-based services (LBS) have accumulated extensive human mobility data on diverse behaviors through check-in sequences. These sequences offer valuable insights into users' intentions and preferences. Yet, existing models analyzing check-in sequences fail to consider the semantics contained in these sequences, which closely reflect human visiting intentions and travel preferences, leading to an incomplete comprehension. Drawing inspiration from the exceptional semantic understanding and contextual information processing capabilities of large language models (LLMs) across various domains, we present Mobility-LLM, a novel framework that leverages LLMs to analyze check-in sequences for multiple tasks. Since LLMs cannot directly interpret check-ins, we reprogram these sequences to help LLMs comprehensively understand the semantics of human visiting intentions and travel preferences. Specifically, we introduce a visiting intention memory network (VIMN) to capture the visiting intentions at each record, along with a shared pool of human travel preference prompts (HTPP) to guide the LLM in understanding users' travel preferences. These components enhance the model's ability to extract and leverage semantic information from human mobility data effectively. Extensive experiments on four benchmark datasets and three downstream tasks demonstrate that our approach significantly outperforms existing models, underscoring the effectiveness of Mobility-LLM in advancing our understanding of human mobility data within LBS contexts.
Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach
Web-scale visual entity recognition, the task of associating images with their corresponding entities within vast knowledge bases like Wikipedia, presents significant challenges due to the lack of clean, large-scale training data. In this paper, we propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation. Instead of relying on the multimodal LLM to directly annotate data, which we found to be suboptimal, we prompt it to reason about potential candidate entity labels by accessing additional contextually relevant information (such as Wikipedia), resulting in more accurate annotations. We further use the multimodal LLM to enrich the dataset by generating question-answer pairs and a grounded finegrained textual description (referred to as "rationale") that explains the connection between images and their assigned entities. Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks (e.g.
Diffusion Self-Guidance for Controllable Image Generation 1 Ben Poole
Large-scale generative models are capable of producing high-quality images from detailed text descriptions. However, many aspects of an image are difficult or impossible to convey through text. We introduce self-guidance, a method that provides greater control over generated images by guiding the internal representations of diffusion models. We demonstrate that properties such as the shape, location, and appearance of objects can be extracted from these representations and used to steer the sampling process. Self-guidance operates similarly to standard classifier guidance, but uses signals present in the pretrained model itself, requiring no additional models or training. We show how a simple set of properties can be composed to perform challenging image manipulations, such as modifying the position or size of specific objects, merging the appearance of objects in one image with the layout of another, composing objects from multiple images into one, and more. We also show that self-guidance can be used for editing real images. See our project page for results and an interactive demo: https://dave.ml/selfguidance
Inference-Time Intervention: Eliciting Truthful Answers from a Language Model
We introduce Inference-Time Intervention (ITI), a technique designed to enhance the "truthfulness" of large language models (LLMs). ITI operates by shifting model activations during inference, following a set of directions across a limited number of attention heads. This intervention significantly improves the performance of LLaMA models on the TruthfulQA benchmark. On an instruction-finetuned LLaMA called Alpaca, ITI improves its truthfulness from 32.5% to 65.1%. We identify a trade-off between truthfulness and helpfulness and demonstrate how to balance it by tuning the intervention strength. ITI is minimally invasive and computationally inexpensive. Moreover, the technique is data efficient: while approaches like RLHF require extensive annotations, ITI locates truthful directions using only few hundred examples. Our findings suggest that LLMs may have an internal representation of the likelihood of something being true, even as they produce falsehoods on the surface.
Automated Classification of Model Errors on ImageNet, Mark Niklas Müller
While the ImageNet dataset has been driving computer vision research over the past decade, significant label noise and ambiguity have made top-1 accuracy an insufficient measure of further progress. To address this, new label-sets and evaluation protocols have been proposed for ImageNet showing that state-of-the-art models already achieve over 95% accuracy and shifting the focus on investigating why the remaining errors persist. Recent work in this direction employed a panel of experts to manually categorize all remaining classification errors for two selected models. However, this process is time-consuming, prone to inconsistencies, and requires trained experts, making it unsuitable for regular model evaluation thus limiting its utility. To overcome these limitations, we propose the first automated error classification framework, a valuable tool to study how modeling choices affect error distributions. We use our framework to comprehensively evaluate the error distribution of over 900 models. Perhaps surprisingly, we find that across model architectures, scales, and pre-training corpora, top-1 accuracy is a strong predictor for the portion of all error types. In particular, we observe that the portion of severe errors drops significantly with top-1 accuracy indicating that, while it underreports a model's true performance, it remains a valuable performance metric.